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a b s t r a c t

An analytical approach of transient heat conduction in two-layered material, of finite depth, with an
imperfect thermal contact, subjected to a moving gaussian laser beam was developed.

The method consists of deriving the solution of the homogeneous part of the heat equation by using
the well known separation of variables method and expressing the source term in series form. The
porous aspect of granular coating layer on substrate was also taken into account earlier in this modelling
work. This model has been successfully applied on a practical system; laser cladding of electronic copper
tracks on alumina substrates. This analytical model can be used also for estimation of the thermal contact
resistance between layers.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Modelling physical problems dealing with heat transfer occur-
ring in case of scanning sources are of great interest in many
technological applications like heat treatments, welding, annealing,
. The surface treatment is one among the very important areas
where analytical approaches of transient heat transfer are needed,
especially in the case of composite materials.

Many practical cases of heat conduction encountered in the
surface treatment field concern two or more than two layers
(deposit–substrate systems, .), involving a coating material used
in order to improve performances of the global medium. In fact, in
this kind of problems, it is difficult to get the full closed form
solution due to some complexity of the system; like interfacial
conditions, and restriction to work in finite dimensions (thin films
or layers). Considerable work, dealing with analytical [1–6] and
semi-analytical [7–9] modelling of welding, cutting, drilling, etc. is
found in the literature, but almost all of them deal with a homo-
geneous material. Most of the studies done on heat transfer for
composite mediums treated the problem numerically, and the
papers that deal with this kind of problems analytically; over
simplify the system by the assumptions of: semi-infinite domain
(no free convection on the boundaries, perfect contact at the
son SAS. All rights reserved.
interface.). Some studies were done in this field where the
authors Adawi et al. [10] obtained a 1D analytical solution of heat
conduction in two-layered material by using Laplace transform;
under the assumption of perfect thermal contact, fixed laser source,
and semi-infinite substrate. The heat losses by convection in the
outer boundaries were neglected, which implies that the solution
can be valid for very short treatment times, because the convective
mode plays an important role if the treatment duration is of the
order of few seconds. Haji et al. [11] studied heat conduction in
composite materials of finite dimensions by using Green’s function.
Baı̈ri et al. [12] studied the effect of a coating on the thermal
behaviour of a body subjected to multiple moving heat sources.
Some other authors studied the heat transfer within thermal
contact resistance [13,14]. Couëdel et al. [15], derived a 2D-
analytical model to calculate thermal cycles in regions of limited
width using a vibrated and non-vibrated moving thermal source.
Alilat et al. [16] studied the 3D thermal behaviour of a rotating disc
subjected to an excentric circular heat source. Some configurations
of moving or variable heat sources have been studied from
analytical solution [17]. When phenomena are fast and transient,
some precautions are needed to carry out the numerical compu-
tation [16–19].

De Monte has studied the heat conduction in homogeneous
materials (without source term) for 1D and 2D using separation of
variables method, for perfect thermal contact [20–22]. But while
treating imperfect thermal contacts [24] the author simplified the
system with the assumptions of steady state and similar thermal
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Nomenclature

ai dimension along y [m]
Ai laser absorptivity
Cpi heat capacity [J kg�1 K�1]
fi(y) initial temperature difference [K]
Gi(t) temporal eigenfunction
hi heat transfer coefficient [W m�2 K�1], Boundaries

(y¼ a1 and y¼�a2).
ki thermal conductivity [W m�1 K�1]
Nu Nusselt number
Pr Prandtl number
Gr Grashof number
P laser power density [W m�2]
P0 laser power [W]
qi volumetric source term [W m�3]
r0 radius of the Gaussian laser beam [m]
t time [s]
Tamb surrounding fluid temperature [K]
Ti0 initial temperature [K]
TCR thermal contact resistance [K m�2 W�1]
v velocity [m s�1]

y space coordinate in y direction
Yi,n the nth space eigenfunction [m]
Yid,n the nth dimensionless space eigenfunction

Greek symbols
ai thermal diffusivity [m2 s�1]
li,n eigenvalues along y [m�1]
ei transmission coefficient
4n temporal function
Vn temporal function
4 porosity (%)
ri density [kg m�3]
qi qi¼ Tamb�Ti [K]
s time duration [s]

Subscripts
H homogeneous
i 1, 2
m mixture
n integer parameter
f fluid phase
s solid phase
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diffusivity for the two materials. Salt [23] derived an analytical
solution for classical boundary conditions but without source term
for perfect thermal contact. A few analytical solutions can be found
in books of Ozisik and Mikhailov [24,25], Jaeger and Carslaw [26].
But they give analytical solutions for simplified boundary
conditions.

That is why this work is focused on two-layered materials with
an imperfect thermal contact, under a moving heat source. The
proposed model can be used for verification of numerical codes if
experimental results are unavailable.

Another aspect studied here is the porosity of the deposit layer,
so the first layer is considered as thin layer made of powder of
granular particles. Theoretical and applied research in flow, heat
and mass transfer in porous media have received increased atten-
tion during the past decades [27–31]. This is due to the importance
of this research area in many engineering applications. Significant
advances have been made in fluid flow modelling, heat and mass
transfer through a porous medium including clarification of several
important physical phenomena. Important topics that have
received significant interest include porosity variation, thermal
dispersion, effects of local thermal equilibrium between the fluid
and the solid phase, partially filled porous configurations, and
anisotropic porous media, among others.
Fig. 1. Simplified sketch of the physical problem.
2. Model and solution procedure

2.1. Physical problem statement

The aim of this paper is to derive an analytical solution of heat
conduction in two-layered material using a new approach, by
treating the homogeneous problem first and then expressing the
source term separately, this analytical solution takes into account
several aspects (Fig. 1).

The extracted solution will consider the imperfect thermal
contact at the interface and the gaussian profile (namely a laser
beam TEM00) moving at a scanning velocity (Fig. 2), and trans-
mitting a portion of the incident energy directly to the substrate
(Fig. 3).
In addition, a porosity aspect of the granular deposit was also
considered in the present model (see Section 2.4). This modelling
work should give an estimation of the thermal field in the composite
material (deposit/substrate), for many practical cases such as:
design of tracks of copper (powder) on alumina substrate. Ceramic
materials were chosen as heat dissipaters owing to their relatively
high thermal conductivity. This model can be used also to estimate
the TCR value characterizing a deposited splat on a substrate, by
comparing experimental results to computations [32,33]. The
developed model can also serve for validating numerical develop-
ment before extension to complex coupling (rapid solidification,
nucleation, .) [35,36].

The geometry of the studied physical problem was simplified as
sketched above (Fig. 1). In order to simplify the calculation, the
interface line was chosen to coincide with y¼ 0. A modified
temperature variable have been done qi¼ Tamb� Ti (i¼ 1 for the first
layer, i¼ 2 for the second one). Both materials were assumed
isotropic with constant thermophysical properties. The surrounding
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Fig. 2. The principle of temperature evolution in a surface spot, under a moving
gaussian laser beam.
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Fig. 3. Laser energy transmission to a two-layered material.
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fluid was assumed uniform at a constant temperature. The exchange
coefficients, and TCR along the interface, are considered constant.
The phase change and the heat losses by radiation are not taken into
account in this study.

It is common to express the laser absorption coefficient as
A¼ 1� R for metals (dense metals), where R is the reflectivity, this
assumption depends on many parameters such as the layer thick-
ness, the laser’s wavelength . So under such conditions, a thin
layer behaves like a semi-transparent material. Consequently, in
the case of thin layers, a portion of the incident laser beam is
reflected, R1� q1, the other portion is absorbed by the first layer and
converted to heat A1$q1, and (1� A1� R1). q1 is transmitted to the
second layer, which follows the same process.
2.2. Mathematical formulation

With the assumptions and simplifications above, the governing
equation of heat conduction in both layers yields to:

1
ai

$
vqi

vt
¼ v2qi

vy2 þ
qi

ki
(1)

where ai, ki and qi are respectively: thermal diffusivity, thermal
conductivity and heat generation in both layers.

where

q1ðy; tÞ ¼A1$P$exp

 
� 2

r2
0

ðr0 � vtÞ2
!

$dðy� a1Þ;

under the condition 0 � y � a1;

t > 0 and p ¼ 2$P0

p$r2
0

(2-a)

and

q2ðy; tÞ ¼A2$ð1� 31Þ$P$exp

 
� 2

r2
0

ðr0 � vtÞ2
!

$dðy� 0Þ;

under the condition � a2 � y � 0; t > 0 (2-b)

a1 and a2 are the thicknesses, A1 and A2 are the respective
absorptivity coefficients, of the first and second layer respectively.
r0 and v are respectively, radius and velocity of the laser beam, and
d is Dirac delta function.

The outer boundary conditions are given by:

�ki

�
vqi

vy

�
y¼�ai

þhiqiðy ¼ �ai; tÞ ¼ 0; (3)

where the sign (�) is only valid for i¼ 2.
The inner boundary conditions are given by:

k1$

�
vq1

vy

�
y¼0
¼ k2$

�
vq2

vy

�
y¼0

(4)

q2ðy ¼ 0; tÞ � q1ðy ¼ 0; tÞ ¼ TCR$k1$

�
vq1

vy

�
y¼0

(5)

where TCR is the thermal contact resistance at the interface.
The initial conditions on both layers are given by:

qiðy; t ¼ 0Þ ¼ fiðyÞ; where fiðyÞ ¼ Tamb � Tiðy; t ¼ 0Þ
¼ Tamb � Ti0; (6)

2.3. Derivation of an analytical solution
of the heterogeneous problem

The analytical solution was derived by the method of separation
of variables, in two steps: first by using the homogeneous part of
the heat equation [20], with the addition of the thermal contact
resistance at the interface, and secondly treating the energy source
terms in series form. This method is appropriate for linear partial
differential equations for finite dimensional medium with constant
thermal properties. This method is similar to Green’s functions
method, but it is easier for composite media.

Step 1 without source terms

The eigenvalues and the eigenfunctions are computed, from the
homogeneous heat equation (qi¼ 0). The homogeneous solution
can be expressed as the product of two functions, dependent only
on y and t.

qHiðy; tÞ ¼ YHiðyÞ$GHiðtÞ (7-a)

the product formula (7-a) yields two simple ordinary differential
equations.

d2YHiðyÞ
dy2 þ l2

i $YHiðyÞ ¼ 0 (7-b)
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dGHiðtÞ
dt

þ l2
i $ai$GHiðtÞ ¼ 0 (7-c)

and then the functions YHi(y) and GHi(t) are:

YHiðyÞ ¼ Ai$cosðli$yÞ þ Bi$sinðli$yÞ (8-a)

GHiðtÞ ¼ exp
�
� l2

i $ai$t
�

(8-b)

after applying the initial and boundary conditions we obtain :

Ai ¼HBi$RiðliÞthe signð�Þis valid for i¼ 1;whereRiðliÞ

¼ ki$liþhi$tanðli:aiÞ
hi�ki$li$tanðli:aiÞ

;
l2

1

l2
2

¼ a2

a1
(9)

And k1$l1$B1 ¼ k2$l2$B2the eigenvalues (li, n) are the positive
real roots other than zero of the following equation:

R1ðl1Þ þ
�

k1$l1

k2$l2

�
$R2ðl2Þ þ ðl1$k1$TCRÞ ¼ 0 (10)

in homogeneous case, temperature expressions in both layers are:

q1Hðy; tÞ ¼
XN
n¼1

Cn$exp
�
� l2

1;n$a1$t
�
$Y1d;nðyÞ (11)

q2Hðy; tÞ ¼
�

k1

k2

�
$

� ffiffiffiffiffiffi
a 2

a1

r �
$
XN
n¼1

Cn

�
h
exp

�
� l2

1;n$a1$t
�
$Y2d;nðyÞ

i
(12)

where the dimensionless eigenfunctions are given by:

Y1d;nðyÞ ¼
�
sin
�
l1;n$y

�
� R1;n

�
l1;n

�
$cos

�
l1;n$y

��
(13-a)

Y2d;nðyÞ ¼
�
sin
�
l2;n$y

�
þ R2;n

�
l2;n

�
$cos

�
l2;n$y

��
(13-b)

where Ri,n and li,n are calculated from equations (9) and (10).

Step 2 with a source term

The non-homogeneous terms (volumetric source terms) are
expressed as a linear combination of the eigenfunctions; which can
be demonstrated easily by comparison with the solution obtained
using Green’s functions method. While both homogenous and non-
homogeneous cases of heat transfer can be expressed in series
form, so it can be proven that the source terms can be expressed in
the same way.

q1ðy; tÞ ¼
XN
n¼1

fnðtÞ$Y1d;nðyÞ (14-a)

q2ðy; tÞ ¼
�

k1

k2

�
$

� ffiffiffiffiffiffi
a 2

a1

r �
$
XN
n¼1

fnðtÞ$Y2d;nðyÞ (14-b)

multiplying side by side by the corresponding eigenfuctions, and
integrating over each layer, (eqs. (14-a) and (14-b)) lead to:

Za1

0

k2$q1ðy; tÞ$Y1d;nðyÞ$dy ¼
Za1

0

 XN
n¼1

fnðtÞ$k2$Y2
1d;nðyÞ

!
$dy

(15-a)
Z0

�a2

�
k1

D
$q2ðy; tÞ$Y2d;nðyÞ

�
$dy

¼
Z0

�a2

 XN
n¼1

fnðtÞ$k2$Y2
1d;nðyÞ

!
$dy (15-b)

where D ¼ ðk1=k2Þ$ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
Þ

Coefficients Nn are given by using the following orthogonality
relation:

Nn ¼ k2$

Za1

0

Y1d;nðyÞ2$dyþ k1$

Z0

�a2

Y2d;nðyÞ2$dy (16)

adding (eqs.(15-a) and (15-b)), and using (eq.(16)), one obtain

fnðtÞ ¼
1

Nn
$

0
B@Z

a1

0

k2$q1ðy; tÞ$Y1d;nðyÞ$dy

þ
Z0

�a2

�
k1

D
$q2ðy; tÞ$Y2d;nðyÞ

�
$dy

1
CA (17)

then the final expressions of temperatures in both domains can be
given by:

q1ðy; tÞ ¼
XN
n¼1

FnðtÞ$Y1d;nðyÞ (18-a)

q2ðy; tÞ ¼
�

k1

k2

�
$

� ffiffiffiffiffiffi
a 2

a1

r �
$
XN
n¼1

FnðtÞ$Y2d;nðyÞ (18-b)

where Fn(t) is determined from the following equation.
Substituting (eqs.(14-a), (14-b), (18-a) and (18-b)) in (eq. (1))

and combining them we obtain:

dFnðtÞ
dt

þ

�
l2

1;n$a1 þ l2
2;n$a2

�
2

$FnðtÞ ¼
�

a1

k1
þ a2

k2

�
$fnðtÞ (19)

Using the initial conditions (eq. (6)) and solving (eq. (19)) by
Laplace transform.

When qiðy; t ¼ 0Þ ¼ fiðyÞ ¼ 0, we obtain:

FnðtÞ ¼
Z1

0

exp

 
�
 
ðl2

1;n
�aþ l2

2;n
�a2Þ

2

!
�ðt � sÞ

!

�

�
a1

k1
þ a2

k2

�
�fnðsÞ�ds ð20Þ

By inserting Fn(t) expression from (eq. 20) in (eqs.(18-a) and
(18-b)), Thus the final temperatures can be expressed as:

Tiðy; tÞ ¼ Tamb � qiðy; tÞ (21)

2.4. Extended solution to a porous layer

Sometimes one of the two materials is a porous medium in
many engineering applications that is why it seems interesting to
extend the derived analytical solution for conditions involving
porous materials.



Fig. 4. Simplified sketch of the physical problem in the case of porous granular deposit.

Fig. 5. Effective thermal conductivity of the porous granular copper layer versus
porosity percentage.
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The method consists of expressing the equations of the mixture
(powder and air), the effective thermophysical properties are
calculated, which yields mathematically to a two-layered material
detailed above.

This model for porous materials is equally applicable on
powders. The formulation of the energy conservation in this layer is
expressed as following [34].

ð1� 4Þ$
�
r$Cp

�
1s$

vT1s

vt
¼ ð1� 4Þ$V$ðk1s$VT1sÞ þ ð1� 4Þ$q1s

(22-a)

�
r$Cp

�
1f $

�
4$

vT1f

vt
þ vf $VT1f

�
¼ 4$V$

�
k1f $VT1f

�
þ 4$q1f

(22-b)

Setting T1s¼ T1f¼ T1 and adding, the two equations above yield
to:

�
r$Cp

�
m$

vT1

vt
þ
�
r$Cp

�
f $vf $VT1 ¼ V$ðkm$VTÞ þ q1m (23)

where�
r$Cp

�
m¼ ð1� 4Þ$

�
r$Cp

�
1sþ4$

�
r$Cp

�
1f (24-a)

qm ¼ ð1� 4Þ$q1s þ 4$q1f (24-b)

km ¼ ð1� 4Þ$k1s þ 4$k1f (24-c)

In the case where the velocity of the fluid vf is negligible, then
(eq. (23)) becomes:

�
r$Cp

�
m$

vT1

vt
¼ V$ðkm$VT1Þ þ q1m (25)

And then the methodology above can be applicable.
The subscript m refers to the mixture, f to the fluid or the air

present in the pores and s to the solid.

3. Applications of the model on real problems

The derived model can be applied for a large number of engi-
neering systems involving heterogeneous media subjected to
energy sources. Analytical treatment of two-layer material under
influence of a heat source is complex as most of the time it involves
further different parameters like thermal anisotropy, the contact
quality, the heat losses, . Therefore, to justify the validity of this
model, it was applied to some elementary applications. The results
given by this model were compared to the results given by already
present numerical models (Fig. 6), for the following conditions:
copper (dense copper) /alumina, a TEM00 laser beam, A1¼20%,
h1¼20 W m�2 K�1, RTC¼ 10�6 m2 K W�1, P¼ 30 W, r0¼1 mm,
V¼ 1 mm s�1.

3.1. Some operating parameters estimate

The application treated here is the fabrication of electronic
tracks from a thin layer of copper powder deposited on alumina
substrate by a laser treatment. So a two-layer rectangular region
(�a2� y� a1; see Fig. 4), initially at uniform temperature T0¼ Tamb,
for times t> 0, the convective heat exchange coefficient h1 in the
upper surface, y¼ a1, is estimated below. The other boundary was
considered adiabatic (h2¼ 0).

The number of the eigenvalues, necessary to reach convergence
of the series is 20 first values. Those eigenvalues were computed
numerically using the Newton–Raphson method, which is accurate
in this case.

In order to solve this problem we needed to estimate different
variables like effective thermal conductivity, thermal contact
resistance and heat transfer coefficients.

Effective thermal conductivity estimate: in this kind of porous
media, the effective thermal conductivity depends on the solid
phase (grains) and fluid’s one (air); many models can be found
in the literature [37–39].

In order to respect the assumption made about the isotropy of
both layers, a 5 mm size powder deposit (grains of the same size)
was used. For calculation of the effective thermal conductivity,
we obtain, by using different models (Fig. 5), for 4¼ 30% by
using the linear relation above (eq. (24-c)) km¼ 252 W m�2 K�1, by
using Kanan et al. model [32], km¼ 224 W m�2 K�1 and
km¼ 219 W m�2 K�1 by using Wimmer’s model [38]. The thermo-
physical properties were averaged over their temperature range of
use.



Fig. 7. Evolution of temperature T1(y¼ 0þ,t) and T2(y¼ 0�,t) besides the inter-
face(y¼ 0) versus time, for the two-layred material (copper/alumia), under the
following conditions: TCR¼ 10�4 m2 K W�1, Tinit¼ 300 �C, 4¼ 0%, h1¼15 W m�2 K�1,
V¼ 2 mm s�1, P0¼ 10 W, r0¼ 0.5 mm, A1¼0.2, A2¼ 0.
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Thermal contact resistance estimate: in the multilayer configu-
ration the quality of the thermal contact between two succes-
sive layers can be quantified by a single parameter which is the
thermal contact resistance. For estimation of this parameter,
combination of both experiments and modelling work is
needed. In general the value of TCR varies from 10�8 m2 K W�1

(perfect contact) to 10�4 m2 K W�1. Different values within this
range were chosen in order to test the model [39–45].
Heat transfer coefficients estimate: the thermal convection coef-
ficient on the upper surface of the deposit (h1) depends on the
temperature and surface area [46].

h1 ¼ Nu$kf=L (26)

L is the characteristic length of the specimen (L z 25 mm), Nu the
Nusselt number, and kf the thermal conductivity of the fluid. Nu is
given by [47].

Nu ¼
� ffiffiffiffiffiffiffiffiffi

Nu0

p
þ
h
Gr$Pr=300

��
1þ ð0:5=PrÞ9=16

�16=9�i1=6�2

(27)

where 10�4�Gr$Pr� 4.1014, 0.022� Pr� 7.640, and Nu0¼ 0.67 for
a plate [48]. Gr and Pr in equation above are Grashof and Prandtl
number, respectively defined as:

Gr ¼ gL3$r2
f $bf $ðT1 � TambÞ=h2

f and Pr ¼ Cpf $hf=kf

where, hf is the viscosity of the air, and bf the thermal expansion
coefficient, bf¼ 1/Tf for ideal gases.

The effect of the air properties variations with temperature is
evaluated at Tf¼ 0.5(T1þ Tamb). h2 was assumed to be zero.

Thermophysical data: the derived model was applied for the
case of design of electronic tracks using a moving laser
beam treatment of the two-layered material (copper powder
deposit on alumina substrate). The averaged thermophysical
properties are: air (k¼ 46.35�10�3 W m�1 K�1, r¼ 0.758
kg m�3, Cp¼ 1074 J kg�1 K�1); copper (k¼ 360 W m�1 K�1,
r¼ 8954 kg m�3, Cp¼ 750 J kg�1 K�1); alumina (k¼ 20 W m�1
Fig. 6. Comparison between analytical and numerical results, of temperature evolu-
tion on a point in the upper surface, for the materials copper/alumina: A1¼20%,
h1¼15 W m�2 K�1, h2¼ 0.0 W m�2 K�1 TCR¼ 10�5 m2 K W�1, P¼ 50 W, r0¼ 1 mm,
V¼ 2 m m s�1, Tinit¼ 300 �C.
K�1, r¼ 3900 kg m�3, Cp¼ 1075 J kg�1 C�1); dimensions are:
a1¼100�10�6 m; and a2¼ 4�10�3 m, convective exchange
coefficients are: h1¼15 W m�2 K�1; h2¼ 0.0 W m�2 K�1.

The absorptivity was taken for 1062 mm wavelength, then we set
A1¼0.2 as average value of the absorptivity coefficient for a dense
copper, and A1¼0.59 for copper powder [49].
3.2. Illustrative simulations of the full problem

It is first interesting to mention that the present analytical
model and numerical ones, is in good agreement with full
numerical solution as shown in (Fig. 6).
Fig. 8. Effect of TCR on temperature T1(y¼ a1,t) on a point in the upper surface versus
time, for the two-layered material copper/alumina: A1¼0.2, h1¼15 W m�2 K�1,
h2¼ 0.0 W m�2 K�1,P¼ 20 W, r0¼ 1 mm, V¼ 1 mm s�1, Tinit¼ 300 �C, 4¼ 0%.



Fig. 11. Evolution of Temperature T1(a1, t) versus time, for different value of laser beam
velocity, under the following conditions: TCR¼ 10�5 m2 K W�1, h1¼15 W m�2 K�1,
Tinit¼ 300 �C, P0¼ 10 W, r0¼ 0.5 mm, A1¼0.59, A2¼ 0, 4¼ 20%.

Fig. 9. Effect of TCR on temperature gap (T1(y¼ 0þ,t)-T2(y¼ 0�, t)) besides the inter-
face(y¼ 0) versus time, for the two-layred material (copper powder/alumia), under the
following conditions: Tinit¼ 300 �C, 4¼ 0%, h1¼15 W m�2 K�1, V¼ 1 mm s�1,
P0¼ 20 W, r0¼ 0.5 mm, A1¼0.2, A2¼ 0.
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The variables above when inserted in the temperature expres-
sions derived for the porous case (physical problem sketched in
Fig. 4), show the results shown in Figs. 7–11.

Fig. 7 shows the temperature evolution versus time, besides the
interface, for a two-layered material

Material (copper powder/alumina), under the following condi-
tions, we can see clearly that under the contact effect (TCR), the
temperature jumb increases. So the bad contact prevents the
normal diffusion of heat from the upper layer to the substrate.

In Fig. 8 we can see the effect of TCR on the temperature
evolution at a chosen monitoring point on the upper surface, so for
a weak value of TCR (quasi-perfect contact), then the evacuation of
heat flux from the first layer to the substrate is facilitated.
Fig. 10. Evolution of Temperature T1(a1, t) versus time, for different percentages of the
deposit porosity, under the following conditions: TCR¼ 10�6 m2 K W�1,
h1¼15 W m�2 K�1, Tinit¼ 300 �C, V¼ 1 mm s�1, P0¼ 10 W, r0¼ 0.5 mm, A1¼0.59,
A2¼ 0.
The temperature gap at the interface (DT¼ T1(0þ, t)� T2(0�, t))
is shown in Fig. 9, so this gap is much higher for important values of
TCR, we can see also that, when TCR value is multiplied by a coef-
ficient 10 for example, the gap is ten times higher, so the following
relation is verified: DT¼ TCR. F (F is the heat flux across the
interface). The temperature jump is proportional to the value of
TCR, for a given constant heat flux.

The effect of porosity percentage on the evolution of tempera-
ture for a single point of the upper surface is shown in Fig. 10. It is
clear that, as the porosity increases, the effective thermal conduc-
tivity and the reached maximum temperature decrease.

Fig. 11 illustrates the temperature evolution of a single point in
the upper surface of the deposit, for different values of a scanning
velocity (v¼ 1, 2, 3 and 5 mm s�1).
4. Conclusion

An analytical solution of transient heat conduction in a two-
layered material with imperfect thermal contact subjected to
a moving gaussian laser beam; was derived in finite dimensions.
The thermal contact resistance at the interface of the two layers
was considered. The obtained results are in agreement with those
obtained numerically.

The method used is separation of variables, and the convergence
of the series is reached for the first twenty eigenvalues, computed
numerically by using the Newton–Raphson method.

The porous aspect of the granular deposited layer has been
taken into account in this model. The porosity affects the thermal
behaviour of the granular deposit.

The methodology has been developed; assumptions and
conditions of use were given. By the way, the models mentioned
routes for taking into account complex aspect of heat and mass
transfers in multilayered material.

This 1D analytical model will be extended to 2D and 3D geome-
tries, and the multi-scans of the workpiece by the laser beam process.
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[24] M.N. Özisik, M.D. Mikhailov, Unified Analysis and Solutions of Heat and Mass
Diffusion, second ed. A Wiley-Interscience, 1994.
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